Индивидуальный тепловой пункт принцип работы

Содержание

Как работает индивидуальный тепловой пункт

Индивидуальный тепловой пункт принцип работы

Индивидуальный тепловой пункт представляет собой технологическую систему, состоящую из сложного оборудования и предназначенную для передачи тепловой энергии от магистральной сети к потребителям. Устройство автоматически распределяет тепло между системами вентиляции, горячего водоснабжения и отопления.

Устанавливается в цокольном этаже здания, в котором будет работать, или в отдельно стоящем сооружении. Такие системы монтируются с целью экономии ресурсов, поскольку они регулируют температуру теплоносителя. В тёплую погоду они снижают подачу тепла в здание, а в холодную — повышают.

Это отличная альтернатива устаревшим элеваторным узлам.

Составные узлы и принцип работы

Поступающие из магистральной системы ресурсы для отопления и горячего водоснабжения зачастую не отвечают нормативным техническим характеристикам.

Чтобы обеспечить конечного потребителя коммуникациями высокого качества, устанавливаются индивидуальные тепловые пункты. Они могут работать как для одного небольшого помещения, так и обслуживать многоэтажки.

Широко используются для установки в административных зданиях и жилых домах.

Основные узлы, составляющие ИТП:

  • пластинчатые теплообменники;
  • запорная и регулирующая арматура;
  • приборы, измеряющие и контролирующие рабочие параметры;
  • насосное оборудование;
  • контроллеры;
  • расширительный бак;
  • щитки управления.

Посредством пластинчатых теплообменников тепло от централизованного носителя передаётся в системы отопления и ГВС. При этом осуществляется автоматическая регулировка температуры.

Вода из магистрального трубопровода не поступает к потребителю, она служит лишь как теплоноситель, возвращаясь назад по обратной линии в городские тепловые станции. Для подачи в независимый контур ИТП греют воду лишь из централизованной системы холодной воды.

Она циркулирует в системе отопления и поставляется для горячего водоснабжения. Это исключает механические отложения в современных радиаторах, где это недопустимо.

Спаренные насосы выполняют функцию балансировки разности давлений, а циркуляционный осуществляет движение воды в системе отопления.

Управление ведётся посредством контроллеров и щитков. Степень автоматизации теплового пункта закладывается в процессе проектирования. Обслуживание установок сведено к минимуму. Достаточно периодически проводить контроль работы ИТП, чистить теплообменники, заменять фильтры.

Основные составляющие ИТП

Стабильная работа индивидуального теплового пункта в любое время года обеспечивается отлаженным алгоритмом. Совокупное взаимодействие модулей, входящих в систему, осуществляют процессы:

  • подготовку воды для ГВС и отопления;
  • преобразование теплоносителя или его параметров;
  • сбор и дальнейшее использование конденсационной жидкости;
  • контроль рабочих параметров;
  • автоматическую защиту системы от аварий;
  • наполнение и подпитку систем теплоснабжения;
  • учет расхода тепловой энергии.

Для очистки и смягчения магистральной холодной воды индивидуальные тепловые пункты оснащаются фильтрами. Так происходит водоподготовка. Потребитель получает питьевую горячую воду из крана. А в системе отопления циркулирует теплоноситель, очищенный от солей и примесей, что уменьшает коррозию труб.

Регулировка температуры теплоносителя в модульных системах проходит с учётом температуры наружного воздуха. Измерения проводятся контроллерами с датчиками, на значения которых реагируют регулирующие электроклапаны. В систему отопления поступает вода, нагретая настолько, что радиаторы в помещении отдают тепло, создавая комфортные условия.

Режим работы пункта зависит от температурных графиков тепловой сети. Если теплоноситель из магистральной системы подается прогретым свыше 95 ℃, то его нужно регулировать.

Датчики измеряют температуру, в случае превышения срабатывают обратные клапаны, происходит подмешивание холодной воды в систему.

  Когда температура теплоносителя составляет 90–95 ℃, его сразу используют для теплообмена, распределяя по гидравлической системе. Возможные температурные графики представлены в таблице

Температурные графики централизованных систем

Учёт затрат тепловой энергии проходит посредством счётчика. Он позволяет контролировать параметры теплоносителя. Однопоточные устанавливаются на подающем трубопроводе. Но наиболее эффективными считаются двухпоточные устройства. Они контролируют показатели в подающей и обратной магистрали.

Схемы сборки компонентов системы

Несложно представить стандартную схему сборки, которая включает основные элементы, необходимые для работы теплового пункта:

  • вводный узел;
  • расходомеры;
  • оборудование вентиляционной, отопительной и ГВС систем;
  • узел согласования давлений между системами потребления и отдачи тепла;
  • подпитку отопительной и вентиляционной систем;
  • узел выхода в обратную магистраль.

Схемы проектируются индивидуально. Учитываются все параметры для выполнения поставленных задач. Только специально разработанная конструкция будет эффективно работать в конкретном случае.

С учётом потребления горячей воды, может проектироваться одно- и двухступенчатая схема подогрева. Широко применяется в жилых домах первый вариант, вода нагревается от сетевого теплоносителя магистральной системы.

В двухступенчатой сначала вода подогревается посредством обратки. Затем догревается теплоносителем подающего трубопровода. Таким образом происходит экономия тепловой энергии. Такая схема эффективна для использования в отопительный период. В летнее время она работает как одноступенчатая.

Проектирование и эксплуатация

Санитарные нормы и правила проектирования индивидуальных тепловых пунктов перечисляют условия, соблюдение которых важно при составлении схемы и вводе системы в эксплуатацию. Тепловой пункт оснащается необходимым оборудованием, установочной арматурой, контрольно-измерительными приборами, устройствами для автоматизированного управления. Модули системы должны:

  • измерять, контролировать, регулировать давление и температуру теплоносителя;
  • вести учёт тепловых мощностей, потерь теплоносителя и конденсата;
  • регулировать расход теплоносителя;
  • выполнять защитные функции при аварийном повышении измеряемых показателей;
  • заполнять и своевременно подпитывать систему отопления.

Предписано использовать теплообменники малых габаритов с высокими теплотехническими и эксплуатационными показателями.

На вводном трубопроводе сетевой магистрали рекомендовано устанавливать грязевой фильтр с манометром. Повышенные показания будут свидетельствовать о наличии загрязнений. Его легко открыть и прочистить. Перед теплообменниками, насосами, электроклапанами и приборами учёта необходимо установить сетчатые фильтры.

Нельзя устанавливать системы под или над жилыми помещениями, если уровень шума при работе превышает допустимую норму.

Модульный тепловой пункт должен обеспечиваться средствами автоматизированного управления, чтобы выполнять заданные функции:

  • регулировать расход тепловой энергии;
  • поддерживать необходимую температуру в системе ГВС;
  • компенсировать гидравлическое давление;
  • включать резервный насос в случае остановки основного.

Для обеспечения долговечности службы оборудования необходимо проводить технический осмотр. Сетчатые фильтры нужно промывать как минимум 4 раз в год и очищать отложения в теплообменниках по истечении пятилетнего срока использования.

Широкие возможности применения

В Украине аналогичные тепловые пункты эффективно используются с 2001 года. Их устанавливали с целью энергосбережения в жилых многоквартирных домах.

С целью экономии энергоресурсов проводится термомодернизация зданий. Она не принесёт видимых результатов, если не будут проведены замены устаревшего оборудования в теплопунктах на новые и современные.

Только комплексный подход в вопросах энергосбережения может принести ощутимую экономию энергоресурсов.

Целесообразно использовать индивидуальные тепловые пункты в возводимых жилых домах и зданиях муниципального значения: больницах, школах, детских садах.

Тепловые пункты применяются не только для обогрева, вентиляции и снабжения горячей водой. Они могут обеспечивать тепловые параметры технических процессов в производстве. ТП создают необходимые условия для таких технологических операций:

  • пастеризации;
  • разогрева вязких жидкостей;
  • промывки деталей и ёмкостей.

Это те операции, которые требуют поддержания определённых температурных режимов в течение всего процесса.

Технические решения, предлагаемые нашими специалистами

Мы занимаемся проектировкой, сборкой и установкой тепловых пунктов в различных отраслях промышленности и жилых зданиях.

Наша компания производит теплоэнергетические системы модульного и блочного исполнения более 12 лет.

Новейшая разработка инженеров — тепловой пункт, работающий с различными видами теплоносителей: сжиженным воздухом, водой, паром, маслом. Установка выполняет сразу две функции – обогрев и утилизацию энергоресурсов.

Специалисты выполняют проектирование согласно предоставленным техническим условиям заказчика, выезжают на объект для осмотра и принятия решений. Есть возможность сопоставить тех. характеристики будущего теплового пункта в зависимости от его стоимости.

Преимущества заказа на изготовление тепловых пунктов нашей компанией:

  • проектирование с использованием средств 3D-моделирования. Заказчик может увидеть, как будет выглядеть готовая установка;
  • разрабатываем проект, собираем и устанавливаем готовую конструкцию;
  • предоставляем необходимую документацию;
  • предприятие оснащено современным оборудованием для производства и сборки ИТП;
  • создаём удобную и компактную компоновку системы для удобства транспортировки и монтажа;
  • сборка модулей осуществляется на жёсткой раме;
  • используем надёжное оборудование, проверенное годами практики;
  • производим отладку и запуск;
  • предоставляем гарантии, проводим обслуживание;
  • срок изготовления от проекта до монтажа, в зависимости от сложности, составляет 3–6 недель.

Долговечность работы тепловых пунктов, изготовленных нашей компанией, обеспечивается использованием технических устройств от известных производителей:

  • теплообменники шведской марки SWEP;
  • трубопроводная система и фитинги Valtec, Zetkama, FAF, Ballomax;
  • насосное оборудование Grundfos, Lowara, Pedrollo, Wilo;
  • щитки от Siemens.

У нас вы можете заказать ИТП для отопительных, вентиляционных систем, кондиционирования, подогрева воды в бассейне, «тёплых полов».

Источник: https://termoprom.com.ua/information/articles/kak-rabotaet-individualnyj-teplovoj-punkt.php

Итп в многоквартирном доме принцип работы. ИТП — индивидуальный тепловой пункт, принцип работы

Индивидуальный тепловой пункт принцип работы

В условиях постоянного роста платы за коммунальные услуги вопрос экономичного расхода воды и энергоресурсов становится более острым. Многие собственники жилья не имеют представления о существовании . Тогда как они помогают сэкономить до 40% коммунальных ресурсов.

Современные ИТП выгодно отличаются от устаревших систем бойлеров без автоматизации. Если вы заинтересованы в снижении платы за коммунальные ресурсы и экономии своих средств, то вам требуется произвести установку узла учета тепловой энергии и согласовать с управляющей компанией дома обустройство ИТП.

Что необходимо для автоматизированного теплового пункта?

В состав необходимого оборудования для ИТП входит:

Арматура для регулирования действия ИТП;

Приборы для замеров расхода энергии;

Щиты электроуправления;

Индикаторы и контроллеры

В большинстве случаев ИТП располагается как отдельный объект, вынесенный за переделы жилого дома, к которому он подключен. Только в новостройках может быть изначально заложена возможность установки индивидуальной котельной.

Тепловой пункт

Тепловой пункт (ТП) – комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.

Тепловой пункт и присоединённое здание

Назначение

Основными задачами ТП являются:

  • Преобразование вида теплоносителя
  • Контроль и регулирование параметров теплоносителя
  • Распределение теплоносителя по системам теплопотребления
  • Отключение систем теплопотребления
  • Защита систем теплопотребления от аварийного повышения параметров теплоносителя

Виды тепловых пунктов

ТП различаются по количеству и типу подключенных к ним систем теплопотребления, индивидуальные особенности которых определяют тепловую схему и характеристики оборудования ТП, а также по типу монтажа и особенностям размещения оборудования в помещении ТП. Различают следующие виды ТП :

  • Индивидуальный тепловой пункт (ИТП). Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.
  • Центральный тепловой пункт (ЦТП). Используется для обслуживания группы потребителей (зданий, промышленных объектов). Чаще располагается в отдельностоящем сооружении, но может быть размещен в подвальном или техническом помещении одного из зданий.
  • Блочный тепловой пункт (БТП). Изготавливается в заводских условиях и поставляется для монтажа в виде готовых блоков. Может состоять из одного или нескольких блоков. Оборудование блоков монтируется очень компактно, как правило, на одной раме. Обычно используется при необходимости экономии места, в стесненных условиях. По характеру и количеству подключенных потребителей БТП может относиться как к ИТП, так и к ЦТП.

Источники тепла и системы транспорта тепловой энергии

Источником тепла для ТП служат теплогенерирующие предприятия (котельные , теплоэлектроцентрали). ТП соединяется с источниками и потребителями тепла посредством тепловых сетей.

Тепловые сети подразделяются на первичные магистральные теплосети , соединяющие ТП с теплогенерирующими предприятиями, и вторичные (разводящие) теплосети, соединяющие ТП с конечными потребителями.

Участок тепловой сети, непосредственно соединяющий ТП и магистральные теплосети, называется тепловым вводом.

Магистральные тепловые сети, как правило, имеют большую протяженность (удаление от источника тепла до 10 км и более). Для строительства магистральных сетей используют стальные трубопроводы диаметром до 1400 мм.

В условиях, когда имеется несколько теплогенерирующих предприятий, на магистральных теплопроводах делаются закольцовки, объединяющие их в одну сеть. Это позволяет увеличить надёжность снабжения тепловых пунктов, а, в конечном счёте, потребителей теплом.

Например, в городах, в случае аварии на магистрали или местной котельной, теплоснабжение может взять на себя котельная соседнего района. Также, в некоторых случаях, общая сеть даёт возможность распределять нагрузку между теплогенерирующими предприятиями.

В качестве теплоносителя в магистральных теплосетях используется специально подготовленная вода . При подготовке в ней нормируются показатели карбонатной жёсткости, содержания кислорода, содержания железа и показатель pH.

Неподготовленная для использования в тепловых сетях (в том числе водопроводная, питьевая) вода непригодна для использования в качестве теплоносителя, так как при высоких температурах, вследствие образования отложений и коррозии, будет вызывать повышенный износ трубопроводов и оборудования. Конструкция ТП предотвращает попадание относительно жёсткой водопроводной воды в магистральные теплосети.

Вторичные тепловые сети имеют сравнительно небольшую протяженность (удаление ТП от потребителя до 500 метров) и в городских условиях ограничиваются одним или парой кварталов. Диаметры трубопроводов вторичных сетей, как правило, находятся в пределах от 50 до 150 мм.

При строительстве вторичных тепловых сетей могут использоваться как стальные, так и полимерные трубопроводы.

Использование полимерных трубопроводов наиболее предпочтительно, особенно для систем горячего водоснабжения, так как жёсткая водопроводная вода в сочетании с повышенной температурой приводит к интенсивной коррозии и преждевременному выходу из строя стальных трубопроводов. В случае с индивидуальным тепловым пунктом вторичные тепловые сети могут отсутствовать.

Источником воды для систем холодного и горячего водоснабжения служат водопроводные сети .

Системы потребления тепловой энергии

В типичном ТП имеются следующие системы снабжения потребителей тепловой энергией:

Принципиальная схема теплового пункта

Схема ТП зависит, с одной стороны, от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны, от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Принципиальная схема теплового пункта

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС.

В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости.

При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Система отопления также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно.

По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления.

Для восполнения потерь служит система подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

Литература

  • Соколов Е.Я. Теплофикация и тепловые сети: учебник для вузов. – 8-е изд., стереот. / Е.Я. Соколов. – М.: Издательский дом МЭИ, 2006. – 472 с.: ил.

Источник: https://sebiz.ru/it-is-in-the-apartment-house-the-principle-of-work-itp-individual-heat-point-the-principle-of-operation.html

Принцип работы итп

Индивидуальный тепловой пункт принцип работы

Принцип работы ИТП следующий.

  1. Носитель тепла приходит в пункт по трубопроводу, отдавая температуру подогревателям отопления, ГВС и вентиляции.
  2. Теплоноситель идет в обратный трубопровод на теплогенерирующее предприятие. Используется повторно, но часть может быть израсходована потребителем.
  3. Потери тепла восполняются подпитками, имеющимися в ТЭЦ и котельных (подготовка воды).
  4. В тепловую установку поступает водопроводная вода, проходя через насос для холодного водоснабжения. Часть ее идет потребителю, остальное нагревается подогревателем 1 ступени, направляясь в контур ГВС.
  5. Насос ГВС перемещает воду по кругу, проходя через ТП, потребителя, возвращается с частичным расходом.
  6. Подогреватель 2 ступени действует регулярно при потере жидкостью тепла.

Виды ТП

Различие ТП — в количестве и видах систем потребления.

Особенности типа потребителя предопределяют схему и характеристики требуемого оборудования.

Отличается способ монтажа и расстановки комплекса в помещении.

Выделяют следующие виды:

  • ИТП для единственного здания или его части, расположенный в подвале, техническом помещении или рядом стоящем сооружении.
  • ЦТП — центральный ТП обслуживает группу зданий или объектов. Располагается в одном из подвалов или отдельном сооружении.
  • БТП — блочный тепловой пункт. Включает один или несколько блоков, изготовленных и поставленных на производстве. Отличается компактным монтажом, применяется для экономии места. Может выполнять функцию ИТП или ЦТП.

Основные типы тепловых пунктов

Узлы подключения системы к источнику тепловой энергии бывают двух типов:

  1. Одноконтурные;
  2. Двухконтурные.

Одноконтурный тепловой пункт – это наиболее распространенный тип подключения потребителя к источнику тепловой энергии. В этом случае для системы отопления дома используется непосредственное соединение с магистралью горячего водоснабжения.

Одноконтурный тепловой пункт имеет одну характерную деталь – его схема предусматривает трубопровод, соединяющий прямую и обратную магистрали, который называется элеватор.

Двухконтурный тепловой пункт

В этом случае теплоносители двух контуров системы не смешиваются. Для передачи тепла от одного контура другому используется теплообменник, обычно пластинчатый.

Схема двухконтурного теплового пункта приведена ниже.

Пластинчатый теплообменник – это устройство, состоящее из ряда полых пластин, по одним из которых прокачивается нагревающая жидкость, а по другим – нагреваемая.

У них очень высокий коэффициент полезного действия, они надежны и неприхотливы.

Количество отбираемого тепла регулируется изменением числа взаимодействующих друг с другом пластин, поэтому забор охлажденной воды из обратной магистрали не требуется.

2.3 Устройство тепловых пунктов

Ниже приведена принципиальная схема теплового пункта

• Схема ТП зависит от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, и от особенностей источника, снабжающего ТП тепловой энергией. 

• Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем горячего водоснабжения ( ГВС) и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

• Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС.

В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости.

При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

• Система отопления также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно.

По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления.

Для восполнения потерь служитсистема подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

Что входит в общие задачи системы

Направленность использования заключается в том, чтобы обеспечивать помещения:

  • хорошей вентиляцией;
  • горячей водой;
  • нагревом помещений жилых домов, коммунальных администраций, производственных предприятий, организаций и целых комплексов.

ИТП должен:

  1. Учитывать, сколько расходует тепла и его носителя.
  2. Защищать тепловую систему от переизбытка теплоносителя в параметрах. В противном случае это может повлечь за собой аварийные ситуации.
  3. Своевременно отключать работу потребительских систем.
  4. Равномерно распределять внутри системы прохождение теплоносителя.
  5. Осуществлять контрольно-регулировочные функции над жидкостью, циркулирующей по трубам и радиаторам. 
  6. Обеспечивать успешное преобразование одного теплоносителя в другой вид. Например, сделать переход из воды к антифризу или пропиленгликолю.

Этапы установки теплового пункта

Процедуру оснащения объекта, многоквартирного дома можно описать следующим образом:

  1. решение жильцов;
  2. заявка в теплоснабжающую организацию для разработки технического задания;
  3. получение технических условий;
  4. предпроектное обследование объекта для определения состояния и состава имеющегося оборудования;
  5. разработка проекта с последующим его утверждением;
  6. заключение договора;
  7. реализация проекта и проведение пусконаладочных испытаний.

Преимущества наличия ИТП

Значительные расходы на создание ИТП допускаются в связи с преимуществами, которые следуют из наличия пункта в здании.

  • Экономичность (по потреблению — на 30%).
  • Снижение затрат на эксплуатацию до 60%.
  • Расход тепла контролируется и учитывается.
  • Оптимизация режимов снижает потери до 15%. Учитывается время суток, выходные дни, погода.
  • Тепло распределяется соответственно условиям потребления.
  • Расход можно регулировать.
  • Вид теплоносителя подлежит изменению в случае необходимости.
  • Низкая аварийность, высокая безопасность эксплуатации.
  • Полная автоматизация процесса.
  • Бесшумность.
  • Компактность, зависимость габаритов от нагрузки. Пункт можно разместить в подвале.
  • Обслуживание тепловых пунктов не требует многочисленного персонала.
  • Обеспечивает комфорт.
  • Оборудование комплектуется под заказ.

Преимущества индивидуальных тепловых пунктов

К плюсам слаженной работы автоматизированного преобразователя ИТП относят:

  1. Очевидную экономию в денежных тратах – на 40-60% меньше только одних расходов на содержание и использование установки.
  2. Сниженное потребление тепловой энергии на 30%, если сравнить неавтоматизированными пунктами.
  3. Точность наладки режимов доводит сокращение теплопотерь до 15%.
  4. Бесшумность в работе.
  5. Компактность в монтаже и её связь с нагрузкой. Например, агрегатная система производительностью до 2 Гкал/ч будет иметь место по площади всего 25-30 кв.м.
  6. Удобство размещения – можно оборудовать подвальное помещение любого здания.
  7. Автоматизация рабочего процесса, что приводит к сокращению численности персонала.
  8. У обслуживающих операторов не обязательно должна быть высокая квалификация в должности.
  9. Возможность выставлять оптимальные режимы в разные дни – праздники, выходные, в периоды сложностей погодных условий.

Такие пункты эффективно сберегают энергию, служат средством для обеспечения в помещении комфорта. Производители часто выпускают такие системы под заказ, что позволяет их максимально удобно спроектировать в индивидуальном порядке.

Источник: https://principraboty.ru/princip-raboty-itp/

Тепловые пункты, производство, монтаж, пуско-наладка

Индивидуальный тепловой пункт принцип работы

/ Продукция по брендам / Статьи /

Версия для печати

Тепловой пункт представляет собой комплекс технологического оборудования, которое используется в процессе теплоснабжения, вентиляции и горячего водоснабжения потребителей (жилых и производственных зданий, строительных площадок, объектов социального назначения). Главное назначение тепловых пунктов – это распределение тепловой энергии от тепловой сети между конечными потребителями.

Все тепловые пункты полностью автоматизированы, что сводит к минимуму эксплуатационные и трудовые затраты. Работа пунктов ТП заключается в водоподготовке, регулировании параметров теплоносителя, его распределении и контроле требуемых параметров, отключении и защите систем теплопотребления в случае аварийных ситуаций, учете расхода теплоносителя и получаемой энергии.

Мощность теплового пункта может достигать 50 МВт при рабочей температуре до 150°С. В качестве теплоносителя могут выступать жидкости, как, например, вода, пар или различные антифризы.

Проектирование, изготовление, комплектация и эксплуатация тепловых пунктов отвечают требованиям СП 41-101-95 “Проектирование тепловых пунктов”.

Преимущества установки тепловых пунктов в системе теплоснабжения потребителей

Среди преимуществ тепловых пунктов можно назвать следующие:

  • минимизация тепловых потерь
  • сравнительно низкие эксплуатационные затраты, экономичность
  • возможность выбора режима теплоснабжения и теплопотребления в зависимости от времени суток и сезона
  • бесшумная работа, малые габариты (по сравнению с другим оборудованием системы теплообеспечения)
  • автоматизация и диспетчеризация процесса эксплуатации
  • возможность изготовления по индивидуальному заказу

Тепловые пункты могут иметь разные тепловые схемы, типы систем теплопотребления и характеристики используемого оборудования, что зависит от индивидуальных требований Заказчика. Комплектация ТП определяется на основе технических параметров тепловой сети:

  • тепловые нагрузки на сеть
  • температурный режим холодной и горячей воды
  • давление систем тепло- и водоснабжения
  • возможные потери давления
  • климатические условия и т.д.

Открытые и закрытые системы тепловых пунктов. Зависимые и независимые схемы подключения тепловых пунктов

В открытой системе теплоснабжения вода для работы теплового пункта поступает непосредственно из теплосетей. Водозабор может быть полным или частичным.

Объем воды, забранный для нужд теплового пункта, восполняется поступлением воды в теплосеть. Следует отметить, что водоподготовка в таких системах осуществляется только на входе в теплосеть.

Из-за этого качество воды, поступающей потребителю, оставляет желать лучшего.

Открытые системы, в свою очередь, могут быть зависимыми и независимыми.

В зависимой схеме подключения теплового пункта к тепловой сети теплоноситель из теплосетей попадает непосредственно в систему отопления. Такая система достаточно проста, так как в ней отсутствует необходимость установки дополнительного оборудования. Хотя эта же особенность ведет к существенному недостатку, а, именно, к невозможности регулирования подачи тепла потребителю.

Независимые схемы подключения теплового пункта характеризуются экономической выгодой (до 40%), так как в них между оборудованием конечных потребителей и источником теплоэнергии установлены теплообменники тепловых пунктов, которые регулируют количество подаваемого тепла. Также неоспоримым преимуществом является повышение качества подаваемой воды.

В связи с энергоэффективностью независимых систем многие тепловые компании реконструируют и модернизируют свое оборудование из зависимых систем в независимые.

Закрытая система теплоснабжения является полностью изолированной системой и использует циркулирующую воду в трубопроводе без забора ее из тепловых сетей. Такая система использует воду только в качестве теплоносителя. Утечка теплоносителя возможна, но вода восполняется автоматически при помощи регулятора подпитки.

Количество теплоносителя в закрытой системе остается постоянным, а выработка и распределение тепла потребителю регулируется температурой теплоносителя. Закрытая система характеризуется высоким качеством водоподготовки и высокой энергоэффективностью.

Способы обеспечения потребителей тепловой энергией

По способу обеспечения потребителей тепловой энергией различают одноступенчатые и многоступенчатые тепловые пункты.

Одноступенчатая система характеризуются непосредственным присоединение потребителей к тепловым сетям. Место присоединение называется абонентским вводом. Для каждого объекта теплопотребления должен быть предусмотрен свое технологическое оборудование (подогреватели, элеваторы, насосы, арматура, оборудование КИПиА и др.).

Недостатком одноступенчатой системы подключения является ограничение предела допустимого максимального давления в теплосетях из-за опасности высокого давления для радиаторов отопления. В связи с этим такие системы, в основном, используют для небольшого количества потребителей и для тепловых сетей небольшой длины.

Многоступенчатые системы подключения характеризуются наличием тепловых пунктов между источником тепла и потребителем.

Индивидуальные тепловые пункты

Индивидуальные тепловые пункты обслуживают одного мелкого потребителя (дом, небольшое строение или здание), который уже подключен к системе центрального теплоснабжения. Задача такого ИТП – обеспечение потребителя горячей водой и отоплением (до 40 кВт).

Существуют крупные индивидуальные пункты, мощность которых может достигать 2 МВт. Традиционно ИТП размещают в подвале или техническом помещении здания, реже их располагают в отдельно стоящих помещениях.

К ИТП подключают только теплоноситель и осуществляют подвод водопроводной воды.

ИТП состоят из двух контуров: первый контур – это контур отопления для поддержания заданной температуры в отапливаемом помещении при помощи датчика температуры; второй контур – это контур горячего водоснабжения.

Центральные тепловые пункты

Центральные тепловые пункты ЦТП применяют для теплообеспечения группы зданий и сооружений. ЦТП выполняют функцию обеспечения потребителей ГВС, ХВС и теплом.

Степень автоматизации и диспетчеризации центральных тепловых пунктов (только контроль за параметрами или контроль/управление параметрами ЦТП) определяется Заказчиком и технологическими нуждами. ЦТП могут иметь как зависимую, так и независимую схему подключения к тепловой сети.

При зависимой схеме подключения теплоноситель в самом тепловой пункте разделяется на систему отопления и систему горячего водоснабжения. В независимой схеме подключения теплоноситель нагревается во втором контуре теплового пункта поступающей водой из тепловой сети.

Они поставляются на монтажную площадку в полной заводской готовности. На месте последующей эксплуатации осуществляется только подключение к теплосетям и настройка оборудования.

Оборудование центрального теплового пункта (ЦТП) включает в себя следующие элементы:

  • подогреватели (теплообменники) – секционные, многоходовые, блочного типа, пластинчатые – в зависимости от проекта, для горячего водоснабжения, поддерживающие нужную температуру и напор воды у водоразборных точек
  • циркуляционные хозяйственные, противопожарные, отопительные и резервные насосы
  • смесительные устройства
  • тепловые и водомерные узлы
  • контрольно-измерительные приборы КИП и автоматики
  • запорно-регулирующая арматура
  • расширительный мембранный бак

Блочные тепловые пункты (модульные тепловые пункты)

Блочный (модульный) тепловой пункт БТП имеет блочное исполнение. БТП может состоять из более, чем одного блока (модуля), смонтированных, зачастую, на одной объединенной раме.

Каждый модуль является независимым и законченным пунктом. При этом регулирование работой общее.

Блоснче тепловые пункты могут иметь как локальную систему управления и регулирования, так и дистанционное управление и диспетчеризацию.

В состав блочного теплового пункта могут входить как индивидуальные тепловые пункты, так и центральные тепловые пункты.

Основные системы теплоснабжения потребителей в составе теплового пункта

  • система горячего водоснабжения (открытая или закрытая схема подключения)
  • система отопления (зависимая или независимая схема подключения)
  • система вентиляции

Типовые схемы подключения систем в тепловых пунктах

В состав теплового пункта также входит система холодного водоснабжения, но она не является потребителем тепловой энергии.

Принцип работы тепловых пунктов

Тепловая энергия поступает на тепловые пункты от теплогенерирующих предприятий посредством тепловых сетей – первичных магистрельных теплосетей. Вторичные, или разводящие, теплосети соединяют ТП уже с конечным потребителем.

Магистральные теплосети обычно имеют большую протяженность, соединяя источник тепла и непосредственно тепловой пункт, и диаметр (до 1400 мм). Зачастую магистральные тепловые сети могут объединять несколько теплогенерирующих предприятий, что увеличивает надежность обеспечения потребителей энергией.

Перед поступление в магистральные сети вода проходит водоподготовку, которая приводит химические показатели воды (жесткость, рН, содержание кислорода, железа) в соответствии с нормативными требованиями. Это необходимо для того, чтобы снижать уровень коррозионного влияния воды на внутреннюю поверхность труб.

Разводящие трубопроводы имеют сравнительно малую протяженность (до 500 м), соединяя тепловой пункт и уже конечного потребителя.

Теплоноситель (холодная вода) поступает по подающему трубопроводу в тепловой пункт, где проходит через насосы системы холодного водоснабжения.

Далее он (теплоноситель) использует первичные подогреватели ГВС и подается в циркуляционный контур системы горячего водоснабжения, откуда поступает уже к конечному потребителю и обратно в ТП, постоянно циркулируя.

Для поддержания необходимой температуры теплоносителя, он постоянно подогревается в подогревателе второй ступени ГВС.

Система отопления – это такой же замкнутый контур, как и система ГВС. В случае возникновения утечек теплоносителя, его объем восполняется из системы подпитки теплового пункта.

Затем теплоноситель поступает в обратный трубопровод и поступает опять на теплогенерирующее предприятие по магистральным трубопроводам.

Типовая комплектация тепловых пунктов

Для обеспечения надежной эксплуатации тепловых пунктов они поставляются со следующим минимальным технологическим оборудованием:

  • два пластинчатых теплообменника (паяные или разборные) для системы отопления и системы ГВС
  • насосная станция для перекачки теплоносителя к потребителю, а именно – к отопительным приборам здания или сооружения
  • система автоматического регулирования количества и температуры теплоносителя (датчики, контроллеры, расходомеры) для контроля параметров теплоносителя, учета тепловых нагрузок и регулирования расхода
  • система водоподготовки
  • технологическое оборудование – запорная арматура, обратные клапаны, контрольно-измерительные приборы, регуляторы

Следует отметить, что комплектация теплового пункта технологическим оборудованием во многом зависит от схемы подключения системы горячего водоснабжения и схемы подключения системы отопления.

Так, например, в закрытых системах устанавливаются теплообменники, насосы и оборудование водоподготовки для дальнейшего распределения теплоносителя между системой ГВС и системой отопления. А в открытых системах устанавливаются смесительные насосы (для смешения горячей и холодной воды в нужной пропорции) и регуляторы температуры.

Наши специалисты оказывают весь комплекс услуг, начиная с проектирования, производства, поставки, и заканчивая монтажом и пуско-наладкой тепловых пунктов различной комплектации.

05 Декабря 2019 г.

Источник: https://gazovik-teplo.ru/cat/articles/teplovye_punkty/

Итп — индивидуальный тепловой пункт, принцип работы » асд екатеринбург

Индивидуальный тепловой пункт принцип работы

Когда речь заходит о рациональном использовании тепловой энергии, все сразу же вспоминают о кризисе и неимоверных счетах по «жировкам», им спровоцированных.

В новых домах, где предусмотрены инженерные решения, позволяющие регулировать потребление тепловой энергии в каждой отдельной квартире, можно найти оптимальный вариант отопления или горячего водоснабжения (ГВС), который устроит жильца.

В отношении старых строений дело обстоит куда сложнее. Индивидуальные тепловые пункты становятся единственным разумным решением задачи экономии тепла для их обитателей.

Определение ИТП — индивидуальный тепловой пункт

Согласно хрестоматийному определению ИТП — это не что иное, как тепловой пункт, предназначенный для обслуживания целого здания или отдельных его частей. Эта сухая формулировка требует пояснения.

Функции индивидуального теплового пункта заключаются в перераспределении энергии, поступающей из сети (центральный тепловой пункт или котельная) между системами вентиляции, ГВС и отопления, в соответствии с потребностями здания. При этом учитывается специфика обслуживаемых помещений. Жилые, складские, подвальные и другие их виды, разумеется, должны отличаться и по температурному режиму и параметрам вентиляции.

Установка ИТП подразумевает наличие отдельного помещения. Чаще всего оборудование монтируется в подвальных или технических помещениях многоэтажек, пристройках к многоквартирным домам или в отдельно стоящих строениях, находящихся в непосредственной близости.

Модернизация здания путем установки ИТП требует существенных финансовых затрат. Несмотря на это, актуальность ее проведения продиктована преимуществами, сулящими несомненные выгоды, а именно:

  • расход теплоносителя и его параметры подвергаются учету и оперативному контролю;
  • распределение теплоносителя по системе в зависимости от условий теплопотребления;
  • регулирование расхода теплоносителя, в соответствии с возникшими требованиями;
  • возможность изменения вида теплоносителя;
  • повышенный уровень безопасности в случаях аварий и прочие.

Возможность влиять на процесс расхода теплоносителя и его энергетические показатели привлекательна сама по себе, не говоря об экономии от рационального использования тепловых ресурсов. Единовременные же затраты на оборудование ИТП с лихвой окупятся за весьма скромный промежуток времени.

Состав индивидуального теплового пункта

Структура ИТП зависит от того, какие системы потребления он обслуживает. В общем случае в его комплектацию могут входить системы обеспечения отопления, ГВС, отопления и ГВС, а также отопления, ГВС и вентиляции. Поэтому в состав ИТП обязательно входят следующие устройства:

  1. теплообменники для передачи тепловой энергии;
  2. арматура запорного и регулирующего действия;
  3. приборы для контроля и измерения параметров;
  4. насосное оборудование;
  5. щиты управления и контроллеры.

Здесь приведены лишь устройства, присутствующие на всех ИТП, хотя каждый конкретный вариант может иметь и дополнительные узлы. Источник холодного водоснабжения, обычно находится в том же помещении, например.

Схема теплового пункта отопления построена с использованием пластинчатого теплообменника и является полностью независимой. Для поддержания давления на требуемом уровне устанавливается сдвоенный насос. Предусмотрен простой способ «доукомплектации» схемы системой горячего водоснабжения и другими узлами, и агрегатами, включая приборы учета.

Работа ИТП для ГВС подразумевает включение в схему пластинчатых теплообменников, работающих только на нагрузку по ГВС. Перепады давления в этом случае компенсируются группой насосов.

В случае организации систем для отопления и ГВС выше рассмотренные схемы объединяются. Пластинчатые теплообменники отопления работают вместе с двухступенчатым контуром ГВС, причем подпитка системы отопления осуществляется от обратного трубопровода теплосети посредством соответствующих насосов. Сеть холодного водоснабжения же является подпитывающим источником для системы ГВС.

Если к ИТП необходимо подключить и систему вентиляции, то он оснащается еще одним пластинчатым теплообменником, связанным с ней. Отопление и ГВС продолжают работать по ранее описанному принципу, а контур вентиляции подключается аналогично отопительному с добавлением необходимых контрольно-измерительных приборов.

Индивидуальный тепловой пункт. Принцип работы

Центральный тепловой пункт, являющийся источником теплоносителя, подает горячую воду на вход индивидуального теплового пункта через трубопровод.

Причем эта жидкость никоим образом не попадает ни в одну из систем здания. Как для отопления, так и для подогрева воды в системе ГВС, а также вентиляции используется исключительно температура подаваемого теплоносителя.

Передача энергии в системы происходит в теплообменниках пластинчатого типа.

Температура передается магистральным теплоносителем воде, забранной из системы холодного водоснабжения.

Итак, цикл движения теплоносителя начинается в теплообменнике, проходит через тракт соответствующей системы, отдавая тепло, и по обратному магистральному водопроводу возвращается для дальнейшего использования на предприятие, обеспечивающее теплоснабжение (котельную). Часть цикла, предусматривающая отдачу тепла, обогревает жилища и делает воду в кранах горячей.

Холодная вода поступает в подогреватели из системы холодного водоснабжения. Для этого используется система насосов, поддерживающих требуемый уровень давления в системах. Насосы и дополнительные устройства необходимы для снижения, либо повышения, давления воды из снабжающей магистрали до допустимого уровня, а также его стабилизации в системах здания.

Преимущества использования ИТП

Четырехтрубная система теплоснабжения от центрального теплового пункта, применявшаяся раньше достаточно часто, имеет массу недостатков, которые отсутствуют у ИТП. Кроме того, последний имеет ряд весьма значительных преимуществ перед конкурентом, а именно:

  • экономичность, обусловленная значительным (до 30%) снижением потребления тепла;
  • доступность приборов упрощает контроль как за расходом теплоносителя, так и количественными показателями тепловой энергии;
  • возможность гибкого и оперативного влияния на расход тепла путем оптимизации режима его потребления, в зависимости от погоды, например;
  • простота монтажа и довольно скромные габаритные размеры устройства, позволяющие размещать его в небольших помещениях;
  • надежность и стабильность работы ИТП, а также благоприятное влияние на те же характеристике обслуживаемых систем.

Этот перечень можно продолжать сколь угодно долго. Он отражает лишь основные, лежащие на поверхности, преимущества, получаемые при использовании ИТП. В него можно добавить, например, возможность автоматизации управления ИТП. В этом случае его экономические и эксплуатационные показатели становятся еще более привлекательными для потребителя.

Наиболее существенным недостатком ИТП, если не считать транспортных расходов и затрат на погрузочно-разгрузочные мероприятия, является необходимость улаживания всевозможного рода формальностей. Получение соответствующих разрешений и согласований можно отнести к очень серьезным задачам.

Фактически, такие задачи сможет решить только специализированная организация.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.